Abstract

The diagnostics of large scale geostrophy in a stratified atmosphere are revisited using a full
Coriolis force. This formulation of geostrophy includes the horizontal and vertical projections
of the planetary rotation vector, accounts for the spherical geometry of the atmosphere, is
not singular at the equator, and provides partial information about vertical transport. The
accuracy of the standard hydrostatic approximation in the geostrophic regime is gauged and an
alternative is discussed. The standard hydrostatic approximation predicts much smaller wind
shears than those derived from the primitive equations. The observations are a set of global
temperature maps of the upper Jovian troposphere at four pressure levels, between 100 and 400
mbar, obtained from mid-infrared observations in June, 1996. Maps of the large-scale thermal
shears show higher concentration of longitudinal structures and vertical transport along two
particular zonal bands at latitudes near 15°N and 15°S. Observational criteria are proposed to
validate the standard versus the new diagnostic as well as the possible geostrophic regime of
Jupiter’s zonal jets.



1 Introduction

Explaining the ability of planetary flows to display very robust large scale organiza-
tion remains a challenging problem in planetary sciences. The structure of the Jovian
zonal winds is one example of such organization. Several models have attempted to
identify the agent driving these jets in Jupiter (Rhines, 1975; Williams & Robinson,
1973; Busse, 1976; Cho & Polvani, 1996; Williams, 1996). Each model assumes that,
on the large scale, Jupiter is dominated by one of several possible dynamical regimes.
The separate claim is that the mechanism is understood, but each explanation is pro-
viding different answers and can explain only different aspects of the large scale jet
structure. Geostrophic dynamics (Rhines, 1975) is considered one of the most likely
regimes. Geostrophy is defined as the dynamical balance between the Coriolis forces
and the horizontal pressure gradients in an atmosphere. Such conditions are found in
very rapidly rotating planets like Jupiter. In geostrophic balance, diabatic effects can
generate horizontal entropy gradients that separate the different thermodynamic vari-
ables from their hydrostatic profile, thus causing geostrophic winds. The geostrophic
model of the large scale banded structure of Jupiter is based on the assumption that
diabatic effects are not strong enough to significantly distort the wind pattern caused
by the geostrophic regime. In this regime, the latitudinal variation of the Coriolis force,
the [ effect, introduces one length scale, the Rhines scale, that coincides with the scale
of the Jovian jets, but the discontinuity of geostrophic balance at the equator raises
doubts on the application of this model at planetary scale. It has been argued that
this discontinuity is an arctifact of the partial representation of the Coriolis force in
the primitive equation approach ( Veronis, 1968; de Verdiére & Schopp, 1994) on which
geostrophic models and diagnostics are based. It is thus relevant to address the effects
of a full Coriolis force. A full representation of the Coriolis force lacks the traditional
singularity of geostrophy at the equator extending the possibility of geostrophic balance

at all latitudes ( Veronis, 1968; de Verdiére & Schopp, 1994). This advantage will be



gradients along isobars can be inferred from the temperature gradients measured by
IR maps. The temperature fields so derived can be used as a surrogate for horizontal
density gradients under the geostrophic approximation. Since Jupiter’s high rotation
rate makes geostrophic balance very plausible, thermal IR observations offer a useful
tool to infer the wind circulation in the upper troposphere and lower stratosphere. Voy-
ager IR measurements covering irregular, but dense, grids of Jupiter have been used
previously to create zonally averaged temperature profiles from which mean winds were
inferred using the primitive equation approach (e.g. (Pirraglia et al., 1981; Gierasch,
1986)). The zonal geostrophic winds derived by these authors seemed consistent with
cloud tracking results under the geostrophic balance assumption. A recent review,
(Gierasch, 1993), pointed out, however, the absence of global maps with regular cover-
age of the full planet. Unlike previous IR data sets, ground based observations provide
latitude-longitude maps with constant longitudinal resolution and high signal-to-noise
ratio above the clouds.

Section 2 of this work reviews the differences between the full and the primitive
equations. Section 3 reviews geostrophy in the primitive equation approach to help
the comparison with section 4 where the the full 3-d version of geostrophic balance, its
effect on the hydrostatic approximation and the thermal wind diagnostics are discussed.
Section 5 discusses the error involved in neglecting the nonhydrostatic and the nonlinear
terms. In section 6 the observations methods are described. Finally, section 7 discusses

the results in light of the previous sections before presenting the conclusions in section

8.
2 The full and the primitive equations

Atmospheric dynamics are described by the equations of gas flow in a spherical shell

geometry:



These equations are understood as a Reynolds-like spatial average in which all vis-
cosities have been neglected. For our work, the averaging scale is set by the resolution of
observations in a similar way as numerical grids set the resolution scale of computational
models. This system of coupled nonlinear equations is too complex for direct applica-
tion in diagnostics since accurate use requires fully nonlinear, 3-dimensional codes in
a spherical geometry. Significant progress is usually achieved by making assumptions
which result in simplifications of the equations. The frequent approach is to substitute
the full equations by the primitive equations. Then, two assumptions, geostrophic and
hydrostatic balance, are applied. Geostrophic and hydrostatic balance are crucial for
diagnostic methods based on IR-data.

The primitive equations set the foundations for atmospheric dynamics and for the
traditional formulation of geostrophy. They are justified from scale analysis of the conti-
nuity equation in atmospheric layers where the depth scale is comparable to the density
scale e.g. (Gill, 1982; Houghton, 1986; Pedlosky, 1987; Holton, 1992). Shallowness of
atmospheric layers suggests much smaller vertical than horizontal velocities. Therefore,
the vertical velocities and accelerations are neglected in the momentum equations. The
neglected terms also involve the horizontal projection of the planetary rotation vector.
As a consequence, only the vertical component of the rotation vector, f = 20 sin A,
is considered. The insufficiency of this approach has been subject of a long standing
debate (Veronis, 1968; Phillips, 1968). Other extra assumptions used in this context
involve using the small gap approzimation (the radial variable is assumed constant in
the derivatives) and neglecting the curvature terms wv/r, v?/r (for a discussion see
(White & Bromley, 1995)).

Geostrophic balance is defined as the balance between the Coriolis forces and the

other forces, that is:
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The predictions of the two descriptions of geostrophic balance differ completely. The
most significant being that the full formulation does not diverge at equatorial latitudes.
Dropping the horizontal component of the planetary rotation is responsible for the
singularity in the traditional geostrophic approximation at the equator because the
physics near the equator are ill-represented. Close to the equator, Taylor-Proudman
columns aligning parallel to the full rotation vector would become perpendicular to
the local horizontal, but this result is prevented in the primitive equations. Another
difference affects the hydrostatic approximation which is inconsistent with geostrophy

with a full Coriolis force (de Verdiére & Schopp, 1994).
3 Geostrophic winds in the primitive equations

It is customary to separate pressure into its hydrostatic and non-hydrostatic contribu-
tions by introducing a perturbation parameter € such that: © = py(2) + emi(z,y, 2).
The basic state is given by the solution to hydrostatic balance: \3ph = pg. Hydrostatic
balance is a barotropic solution to the momentum equations with ¥ = 0. In hydrostatic
equilibrium, where gravity is in the vertical direction, pressure and, therefore, density
depend only on z. The equation of state p(p, T) then implies that, temperature depends
only on z in hydrostatic balance. This justifies the expansions T' = Tj,(z)+erT1 (z,y, 2)+
O(e?p), where T}, is defined as the basic temperature profile at which hydrostatic balance
(no buoyancy) holds, and p(p,T) = pp [1 — ar(T — T}) + k(p — pn) + 0(6%)] where,
ar = ——pih (Ea‘TE;)p is the coefficient of thermal expansion, and s = i (%)T is the co-
efficient of isothermal compressibility. ) /pp ~ 1. This expansion is needed for non-ideal
gases or out of equilibrium thermodynamics. In an ideal gas in equilibrium ar = 1/T},
k = 1/py. We allow for different perturbation parameters ey # € # €, to account for
situations where temperature, pressure, and density deviations have different magni-

tudes. It will be shown later that €, < e and thus, e ~ €. Jupiter’s atmosphere is in a

diabatic situation out of equilibrium where uniform internal heating largely dominates



perturbation is refered to as the “standard” or the “classical” hydrostatic approxima-
tion. The hydrostatic approximation only means that the vertical pressure profile is not
determined by hydrostatic balance, but horizontal pressure gradients are possible.
Pressure is difficult to measure by remote sensing, and thus an alternative widely
used in IR diagnostics are the thermal wind equations (e.g. (Gierasch, 1986; Mag-
alhdes et al., 1990; Orton, 1994)). This alternative returns the vertical gradients of
the geostrophic winds so that, if they are known at a pressure level, the winds can
be derived through integration. This alternative has the advantage of requiring only

knowledge of the temperature field. Instead of using the pressure gradient term %67‘(,

it is standard practice to define the geopotential as ®(z,y,2) = — f Zzo gdz, such that,
from the hydrostatic approximation, g—i’ = —% = ——]\}/}—Z;-. In terms of ®, the geostrophic
velocities (3) are, ug = —%%;I/—’ and vg = %g—i. Following e.g. (Holton, 1992) pp. 74-

75, if these identities are differentiated with respect to pressure and the differential is

multiplied by pressure yields:
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where z = Hz* = —Hln(py/po), with H = RT} /g being the pressure scale-height.

What leads to the traditional thermal wind relations:
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82* o —-er (%)p-I—O(w, ERO,E ) (4)
Ovy R

= i (%)p + O(w, eRo, €?).

oz*
For the later comparison, it is worth to note here that in its customary application

in diagnostics, z and y are the horizontal variables. This involves assuming that the
permutations of the derivatives for the derivation of (4) remain valid, which holds if that
Op/0x = Op/0y = 0. This identity is truth if pressure is understood as the hydrostatic

profile and one neglects the horizontal contributions contained in erny.



a different approach. It can be seen easily that if the small gap approximation used
in shallow layers is used to calculate the divergence, the continuity equation leads to
the condition: g%%% Cos A = %%}, which does not diverge either. Both conditions
suggest that, except at the poles, the ratio of the density perturbations to the pressure
perturbations is €,/e ~ 1/(gr) < 1.

It has been noted for the unstratified case (de Verdiére & Schopp, 1994) that geostrophic
balance with a full Coriolis force is incompatible with the hydrostatic approximation.
This happens because (5) can have a solution only if its right hand side is perpendicular
to the rotation vector k. This is, if: k- (Vr — pg) = ek - (Vry — 20§ +O(e?) = O(e?).
In a manner that will prove useful later, this condition reads:

l% €p P1 _cos)\87r1+sin/\(87r1 €p )
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This condition can be seen as reflecting that the zonal velocities involved in the merid-
ional and vertical momentum equations have to be consistent with each other. One
can see (7) as the planetary scale version of the “hydrostatic approximation” since this
identity reduces to the hydrostatic approximation under the assumption that only the
vertical rotation is important. If the nonlinear contribution for low Rossby numbers is
being included in 71, this condition remains valid in the nonlinear regime to order €.
If this relation is used in (6), the zonal velocity becomes: u, = —m%—’; + Ofe).
This result coincides with the traditional expression derived from the primitive equa-
tions, which is suprising since there are significant differences in the number of terms
used and in the fact that the hydrostatic approximation is not used in this section.
The meridional and vertical components remain, however, different from the standard
prediction.

The standard hydrostatic approximation is a deeply entrenched assumption, applied
even in formulations with a full Coriolis force ( White & Bromley, 1995). It may be il-

lustrative to adress also the results obtained with a full geostrophy and the hydrostatic

approximation for the sake of comparison. In that case, the velocity is not a solution to
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equation is the curl of the momentum equation. After multiplying by density, the curl

of (5) leads to:
(263 9)(o5) = Vo A G (®)

This expression includes the full planetary vorticity and the vertical velocity.

The velocities 7y and ¥y + AF are solutions to the same equation if (26 - 6)(p5‘g) =
(26 - 6)(p1‘fg + pAk). This requires the derivative of A along the rotation axis to be
zero. Thus the indeterminacy A does not contribute to (8).

The right hand side of (8) will be refered to as the baroclinic term B. Using that

ﬁph = prd = (p — €,p1)7, the dominant contribution to the baroclinic term is:

M
<l

B

pAG=
P —€pp1 P

Vo AVpy, _ 1+ Ep%ﬁp AVpp + O(e2) = —pV (%) AVpp + O(€?)

Since IR measurements provide temperature information as a function of pressure, it
is desirable to express B in terms of T and p. For an ideal gas in equilibrium this yields:
B=-— pMirﬁ(T/ p)AVpy+0(e2). Our IR measurements are retrieving the temperatures
along constant pressure levels, thus p is considered a constant in the previous expression
to first order of approximation in € and we write B as:

5_ R Vpy AVT R Vp, AVT}

= = T L O(P) = epp—
pM'I‘ prt+em ( ) er Ph

+ O(€?).
Where T(z,y,2) = Tp(z) + erTi(z,y, 2z) + O(€?) has been used. Finally, since IR ob-
servations are returned on pressure coordinates, one can define pressure coordinates to

order €! to rewrite the vertical derivative terms as:

v, u
Oz’ Ay’ Opy

—;—ﬁpevi =e ( ) +0(e%) = eV,

where ew; = —gpev; = —gppev; + O(€?) with v; being the components of the velocity
vector. Using this relation on the left hand side of (8), one can express it in pressure

coordinates as:

B R (8lnph

- ) (e; A wl) +O(e?) (9)
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Direct comparison of these expressions with the familiar expressions (4) show that they
coincide at the poles or whenever the meridional changes of velocity are small. This
is a gauge for the error introduced in the standard approximation by dropping one
component of the Coriolis force. The neglected terms are unimportant in Jupiter at the
latitudes where the zonal jets reach their local maximum and minimum velocities. This

condition occurs rarely (Limaye, 1986).
4.2 Thermal winds with the geopotential formulation

A different approach for getting the vertical changes of the wind is possible with the
geopotential formulation. This approach violates (7) since it requires using the hydro-
static approximation in order to permute the vertical and horizontal derivatives of the
geopotential. The hydrostatic approximation is inconsistent with (7) but because of
its widespread use, it is worth looking at the resulting predictions. ( White & Bromley,
1995) stated that the errors involved in using the hydrostatic approximation with a full
parameterization of the Coriolis force are nevertheless smaller than the error involved
in taking the primitive equations.

When the hydrostatic approximation is used, the geostrophic velocity (6) becomes

1 0 0
Uy = éﬂ_p (— sin)\%l—,sin)\ﬁ,—cos )\—73) which, in terms of the geopotential,
1 b o ®
reads: ¥y = 20 (— sin }\g—y,sin /\?)_x’ — cos A%ﬂ;) It is readily seen that this veloc-

ity is not a solution to the full geostrophic condition unless condition (7) is introduced
through the substitution cot )\%’;} = %ri + %plg. This substitution is needed only in
the zonal component, the meridional and vertical terms remain unaffected. It may be
worth noting that the zonal velocity in the standard geostrophic solution also fails to
solve the geostrophic equation with a full Coriolis force. The standard result becomes
a solution to the full problem when the same substitution is introduced.

Following the same steps as in section 3 for this velocity, one obtains the thermal

wind relations:
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that can balance the gravity acceleration is the vertical pressure gradient. The Coriolis
acceleration is the second most important contribution in the momentum equation but
its value is much smaller. The nonhydrostatic correction is given by the ratio of the
Coriolis acceleration to gravity, that is, the planetary Froude number € = 2UQ /g, which
is of the order of € ~ 1073 for Jupiter. The vertical pressure profile should thus remain
close to a hydrostatic profile and geostrophic motion introduces a correction of the order
of the Froude number. Table I also shows that one can expect Ro < 107! and thus
¢ ~ 1073 > eRo > ¢ which is consistent with the perturbative series used so far.

The present criterion based on the Froude number does not require shallowness and
depends only on the magnitude of the typical velocity U, the acceleration g, and the

rotation frequency €.

5.2 Ageostrophic contributions

The geostrophic equations are a linear approximation, both in the traditional and in
the 3-d model. Their accuracy is limited by the amplitude of the nonlinear terms which,
themselves, depend on the solution. Perturbative arguments can be used to estimate
the magnitude of the higher order terms in the momentum equation.

Expression (6) for the geostrophic velocity can be used to estimate the advection
term. Let us define & = (¥, + Rot,,) (where ¥, is the ageostrophic contribution to the

total velocity), we can write the nonlinear advection term as:

(@- V)T = [(T, - V)T, + Ro(T, - V)T, + Ro(T, - V)¥,] + O(*Ro?, %)

From our scale analysis, Ro is < 10™!. Therefore, the main contribution to advection is
given by the geostrophic velocity and is of order €2. Using (6) with the measurements
in hand, one can now understand the existing evidence of why linear models have been
so successful at the scale of the measurement resolution: the dominant horizontal tem-

perature gradients are latitudinal, thus so are the gradients of the pressure anomalies.
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data with emission angles greater than 60°, and thus the combined maps are cut off
near for latitudes greater than ~ 60°.

The composite global temperature maps were formed from data taken as much as
5 days apart. Previous studies of the rotation rates of the longitudinal feature seen
in the temperature structure (Deming et al., 1989; Deming et al., 1997; Magalhaes et
al., 1989; Magalhdes et al., 1990; Orton, 1994) report rotation rates of ~10 m s—L.
Such a rotation rate produces a longitudinal smearing of 4300 km (~ 3.5°) over our
maximum time difference of five days. This is comparable to our diffraction-limited
spatial resolution of ~ 4700 km. Examining the overlapping longitudinal regions of our
data show that actual shifts of discrete, identifiable, features was typically much less
than the smearing size of 3.5°. While it is still possible that evolution of the temperature
field could have occurred within the period spanned by the data, we did not observe

any such evolution above our noise level.

7 Results

7.1 Thermal winds

Figures 2a-2d and 3a-3d show the thermal winds along the rotation axis (10). These
are the consistent approach to geostrophic thermal winds with a full Coriolis force.

All of the figures use the same scaling to facilitate the comparison of relative ampli-
tudes. Banded structures are apparent in the zonal winds at most latitudes. Meridional
winds appear rather constant. Longitudinal structures are apparent in both. Such

longitudinal structures are not visible in zonal mean data.
7.2 Thermal winds with the hydrostatic approximation

In order to make a comparison with results based on the primitive equations, figures
4a-4d, 5a-5d, 6a-6d, and 7a-7d show the thermal winds (12) along the vertical when the
hydrostatic approximation is used. Figures 4a-4d, compare the familiar result based on

the primitive equations, (valid when the meridional velocity gradients are negligible) in
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from the full 3-d equations for atmospheric flow have been applied for the first time on
diagnostics of Jupiter’s upper troposphere.

The development of a 3-d geostrophic formulation for atmospheric diagnostics has
resulted in new sets of thermal wind relations (10) and (12). The connections between
the traditional and the global scale formulations of geostrophy have been discussed.

The hydrostatic approximation has been shown to be incompatible with a full Cori-
olis representation of geostrophy in a stratified atmosphere. In the alternative to the
hydrostatic approximation, a cylindrical symmetry is introduced by relation (7). An-
other result is that vertical wind shears may be several times smaller than previously
thought, depending on the latitude. 3-d geostrophy has also provided information on
the vertical derivatives of the three components of the geostrophic wind. This may be
useful to infer vertical transport.

Both, geostrophic balance and the hydrostatic approximation have been standard un-
questioned assumptions, but criterion (7) makes incompatible their simultaneous use.
There are many other aspects of the dynamics that are not being considered, like non-
linear effects, the fact that the dynamics is not isentropic, the effects of large scale
eddy viscosity, or the interaction of the different volatiles. If the pressure field is pre-
dominantly defined either by geostrophy or by the hydrostatic profile can be answered
only from additional observational evidence. This has been provided only at one loca-
tion (Atkinson et al., 1998), but one needs to compare large extensions to validate the
predictions of geostrophy based on (7) and the hydrostatic approximation.

On the observational side, the thermal wind relations have been used to infer low-
noise regularly gridded maps of possible vertical transport at four different pressure
levels in the upper Jovian troposphere using ground-based infrared observations. The
maps put forward diverse predictions whose validity requires observational confirmation
to help to understand the dynamical state of Jupiter at the depth of our observations.

All maps imply a large amount of zonal organization. They also show two relatively
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different locations of the updrafts and downdrafts.

The ultimate arbiter of these hypotheses, of course, would be reliable measurements
of vertical winds in different regions of Jupiter, and of the pressure and density fields
but these are unlikely to be available for some time. The absence of visible tracers at
these levels above the clouds make in situ measurements the only candidates to solve
these puzzles.
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Figure Captions

Figure 1. Composite global temperature maps as a function of planetocentric latitude
and west System IIT longitude. Note the the bright feature near 25° W, 25° N, is the
Jovian moon Io which was transiting during the observation.

Figure 2. The zonal component of the geostrophic wind shear, Ju,/0Z*, for each
pressure level.

Figure 3. The meridional component of the geostrophic wind shear, dv,/0Z*, for
each pressure level.

Figure 4. Mean zonal values of the zonal component of the geostrophic wind shear, <
Ougy/0z* >, for the upper and lower pressure levels, compared to the cloud derived winds
(solid line) from Limaye 1986. Results using the classical hydrostatic approximation are
shown as filled circles. Results using equation (7) are shown as open squares. The upper
two panels are scaled to show the full range. The lower panels are scaled to show the
details of the small amplitude structure. Panel (a) corresponds to the 100 mbar pressure
level, (b) to 400 mbar , (c) to 100 mbar, and (d) to 400 mbar.

Figure 5. The zonal component of the geostrophic wind shear, Ju,/0z*, for each
pressure level.

Figure 6. The meridional component of the geostrophic wind shear, dvy/02*, for
each pressure level.

Figure 7. The vertical component of the geostrophic wind shear, dw,/0z*, for each

pressure level.
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